Exotic projective structures and quasifuchsian spaces II

نویسنده

  • Kentaro Ito
چکیده

Let P (S) be the space of projective structures on a closed surface S of genus g > 1 and let Q(S) be the subset of P (S) of projective structures with quasifuchsian holonomy. It is known that Q(S) consists of infinitely many connected components. In this paper, we will show that the closure of any exotic component of Q(S) is not a topological manifold with boundary and that any two components of Q(S) have intersecting closures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exotic Projective Structures and Boundary of Quasi-fuchsian Space

Let P (S) denote the space of projective structures on a closed surface S. It is known that the subset Q(S) P (S) of projective structures with quasiFuchsian holonomy has in nitely many connected components. In this paper, we investigate the con guration of these components. In particular, we show that the closure of any exotic component of Q(S) intersects the closure of the standard component ...

متن کامل

Complex earthquakes and Teichmüller theory

It is known that any two points in Teichmüller space are joined by an earthquake path. In this paper we show any earthquake path R → T (S) extends to a proper holomorphic mapping of a simplyconnected domain D into Teichmüller space, where R ⊂ D ⊂ C. These complex earthquakes relate Weil-Petersson geometry, projective structures, pleated surfaces and quasifuchsian groups. Using complex earthquak...

متن کامل

Positive Ricci Curvature

We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...

متن کامل

Exotic Projective Structures and Quasi-fuchsian Space

1. Introduction. Let S be an oriented closed surface of genus g > 1. A projec-tive structure on S is a maximal system of local coordinates modeled on the Riemann sphere C, whose transition functions are Möbius transformations. For a given pro-jective structure on S, we have a pair (f, ρ) of a local homeomorphism f from the universal cover S of S to C, called a developing map, and a group homomo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008